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Abstract— This paper deals with audio–video transmission
over IP networks and proposes a method of estimating per-
ceptual QoS (i.e., user–level QoS) in real time in terms of the
interval scale, which is referred to as the psychological scale.
The proposed scheme utilizes both temporal and No Reference
spatial (picture’s) quality, which are application–level QoS, and
estimates the user–level QoS from the application–level QoS. To
evaluate the effectiveness of the proposed scheme, we compare
the proposed scheme with a scheme which uses only temporal
quality for the estimation and a scheme with both temporal and
Full Reference spatial quality. We made a simple experiment of
audio–video IP transmission; we measured the application–level
QoS directly and assessed the user–level QoS by the method of
successive categories. Applying the principal component analysis
and multiple regression analysis to the experimental results,
we obtained multiple regression lines (i.e., equations for the
estimation). As a result, we see that the user–level QoS can be
estimated with high accuracy by using both temporal quality and
spatial quality.

I. INTRODUCTION
The audio–video transmission is an essential ingredient of

multimedia application services in the IP networks, which are
becoming an information infrastructure in the form of the
Next Generation Network (NGN) [1] in addition to the current
Internet.

In networked multimedia applications, the ultimate goal of
the service is to provide perceived quality that satisfies the
users [2]. In order to realize it, we have to perform some
control and management of QoS (Quality–of–Service). This
needs real–time assessment (monitoring) of QoS, in particular,
perceptual QoS, which corresponds to user-level QoS in the
context of the layered network architecture 1. However, note
that real-time measurement of user-level QoS is practically
impossible, since the network operator cannot ask the users to
report their perceptual quality in real time. This leads to an
increasing demand for methods of estimating user-level QoS
by using automatically measurable lower-level QoS parameters
such as packet loss ratio and delay jitter.

In the literature, we can find various methods of assessing
(i.e., measuring and/or estimating) subjective quality (i.e.,
user–level QoS) in audio and/or video transmission. Among
them, the ones recommended by ITU–T and ITU–R are well–
known. In these methods, however, we notice two main limi-
tations in applying them to real-time estimation of user-level
QoS in audiovisual transmission. One is that the great majority
of the methods deals with only a single medium; either video
only or audio only. The other is their inapplicability to the
real–time estimation.

1In IP networks, six kinds of QoS are identified along the protocol stack:
physical–level, node–level, network–level, end–to–end–level, application–
level, and user–level [3]. QoS at a level is quantified by its QoS parameters.

Let us examine the two limitations in more detail below.
First, we focus on video quality assessment. ITU–R Recom-
mendation BT.500 [4] and ITU–T Rec. P. 910 [5] are typical
examples of the method; the former deals with television
pictures, and the latter is for digital video images. Both
recommendations specify methods of measuring subjective
quality by using human observers; therefore, they are not
applicable to the estimation we need.

According to ITU–T Rec. J. 143 [6], estimation methods of
perceptual video quality are classified into three models: Full
Reference (FR), Reduced Reference (RR), and No Reference
(NR). The FR model estimates the perceptual video quality by
comparing the video stream to be assessed with the original
stream; therefore, this model cannot be utilized for real–time
estimation of the perceptual quality of received video streams,
since no original signal is available at the receiver in real time.
The RR model also uses some information on features of the
original stream in the estimation, while the NR model needs
no information on the original stream. Thus, the NR model is
the most suitable for our purpose.

The VQEG (Video Quality Experts Group) [7] has been
actively studying methods of predicting (i.e., estimating) per-
ceptual video quality in addition to measuring it; it assesses
the accuracy of proposed prediction methods and makes inputs
to the creation of the recommendations of video quality
assessment methods. The VQEG has provided the final report
on the FR models in [8]. The RR and NR models are now
under investigation.

We next turn our attention to audio quality assessment,
for which ITU–T Rec. P.862 [9] and G. 107 [10] are often
utilized. P.862 provides the PESQ score; this produces MOS
(Mean Opinion Score), which is a user–level QoS parameter.
The calculation of the PESQ score needs both received signal
and original signal; this implies that PESQ is a kind of FR
model. Also, G.107 defines the E–model for assessment of
the subjective quality of VoIP; it gives the R–factor, which
is convertible to MOS. However, the E–model is a network
planning tool and is not used for the real–time estimation
during the network operation.

The methods mentioned so far are intended for only a single
medium, namely, either video only or audio only. Regarding
this limitation, it should be noted that audiovisual transmission
is featured by cross–modal influences of audio and video as
studied in [11], [12], [13] and [14]. We need some methods
which take the cross–modal influences into consideration. The
approaches in the above papers, however, are not directly
applicable to the real–time estimation.

There also exist ITU–T Recommendations for subjective
quality assessment of both audio and video together, including
P.911 [15] and J.148 [16]. However, P.911 cannot be used in
the real–time estimation since it presents subjective quality
measurement methods similar to those of P.910. Rec. J. 148
details the requirements for the development of an objective
auditory–visual perceptual quality model taking into consid-
eration the cross–modal influences; this is the first ITU–T
Recommendation that clearly states the importance of the
treatment of both audio and video in perceptual quality as-



sessment. However, J.148 has established only a basic model
and does not provide the details of the assessment procedure.

In order to give a solution to the problem of real–time
estimation of user–level QoS in audio–video IP transmission,
Tasaka and Ito proposed a method in [17]. The method
is based on QoS parameter mapping between application–
level and user–level; the estimation scheme utilizes multiple
regression lines that predict user–level QoS parameter values
from application–level QoS parameter values. The reason why
application–level QoS parameters has been selected as the in-
dependent variables for the estimation is that the application–
level QoS can represent the temporal structures of audio and
video as well as the video spatial (i.e., picture’s) structure 2.

The application–level QoS parameters used in [17] are
ones concerning the quality of media synchronization [3],
which represents temporal quality of received audio–video
streams in units of MU (Media Unit) 3. Those QoS parameters
are automatically measurable in real time. For simplicity of
implementation, the method in [17] does not utilize any spatial
quality (i.e., picture quality) of video for the estimation. That
is, the receiver does not output a video MU unless all packets
of the MU are received correctly; this implies no degradation
of output picture quality, though it incurs the degradation of
the temporal quality as video MU skipping. Quality estimation
in the case of incomplete video MU output was left as future
work.

The current paper improves the method in [17] by taking
into consideration spatial quality of video in addition to the
temporal quality. Spatial quality of video at the application–
level is often assessed by means of some FR model, typically
in terms of the PSNR (Peak Signal to Noise Ratio) or equiv-
alently MSE (Mean Square Error) of a picture signal; note
that its calculation needs not only a received picture but also
the corresponding original picture. The method in the current
paper utilizes a metric of video spatial quality based on an NR
model proposed in [18]

The remainder of the paper is organized as follows. Section
II introduces methods for the video spatial quality evaluation.
Section III gives a brief description of a method for measuring
user–level QoS and a method for the estimation. Section IV
demonstrates an experimental methodology for measuring the
application–level and user–level QoS. Section V presents ex-
perimental results and examines the accuracy of the proposed
method. Section VI concludes the paper.

II. METHODS FOR VIDEO SPATIAL QUALITY EVALUATION

In this paper, we utilize an NR method proposed in [18]
to evaluate the degradation of video spatial quality due to
packet loss. We have decided to employ this method since it
has low computational complexity and therefore can be used
for real–time monitoring of streaming video; this meets our
requirement for the real–time estimation.

In addition, we calculate MSE of video luminance, though
it is a metric of the FR model; this is just for comparison
purposes in order to examine how effective the NR method is.

Let us give an outline of the NR method. The method
defines a metric that expresses the quality degradation due
to packet loss. The video decoder is supposed to use a
simple replacement algorithm for error concealment; a lost
macroblock is replaced by the corresponding macroblock from
the previous frame. Therefore, when packet loss occurs, the
edges of the replaced macroblock often become different
from the ones of the adjacent macroblocks. Thus, the method

2Note that QoS parameters at the end–to–end and lower levels do not
reflect the media types treated because of the principle of the layered network
architecture.

3Media synchronization can be classified into intra–stream synchronization
and inter–stream synchronization. The former keeps the continuity of a single
stream (audio or video), while the latter is synchronization between audio and
video streams. A video MU is usually defined as a video frame and an audio
MU as a constant number of audio samples. An MU is usually divided into
two or more packets.

exploits the structure of the artifact across the macroblock
boundaries. The basic idea of the metric is to measure the
difference in the edge strength between the one across the two
adjacent macroblocks and the one within a macroblock. The
method produces the metric by summing up the differences
for all macroblocks of a video frame. In this paper, we denote
this metric by SNR.

III. METHODS FOR USER–LEVEL QOS MEASUREMENT
AND ESTIMATION

A. User–level QoS measurement
In this paper, we express user–level QoS in terms of a

QoS parameter of the interval scale, which is referred to
as the psychological scale [19]; we do not adopt MOS,
which is the user–level QoS parameter mainly used in ITU–
T/R recommendations and many of technical papers. This
is because the psychological scale can represent the human
subjectivity more accurately than MOS. The interval scale can
be calculated by one of the psychometric methods [20], [21].

For the calculation of the interval scale, as in [17] and
[19], this paper adopts the method of successive categories,
which is composed of two steps: the rating–scale method
and the law of categorical judgment. The rating–scale method
specifies how the subjective measurement is made on stimuli,
which are audio-video streams output at the receiver in our
case; an assessor classifies the stimuli into a certain number
of categories (e.g., five) each assigned an integer (typically
5 through 1 in order of highly perceived quality). From the
measurement results by the rating–scale method, the law of
categorical judgment provides the interval scale 4.

Since the law of categorical judgment is based on several
assumptions, we have to confirm the goodness of fit for the
obtained scale. For a test of goodness of fit, we conduct
Mosteller’s test [20], [23]. Once the goodness of fit has been
confirmed, we use the interval scale as the user–level QoS
parameter, which is therefore called the psychological scale.

B. User–level QoS estimation
As in [17], [19] and [22], this paper estimates the psy-

chological scale by means of QoS mapping between user–
level and application–level. We perform the QoS mapping with
multiple regression analysis [21] by defining the psychological
scale as the dependent variable. As the independent variables,
we employ application–level QoS parameters representing
temporal and spatial quality, which can highly correlate with
each other. This requires us to select appropriate independent
variables with low cross–correlations from among the intro-
duced variables.

Principal component analysis helps us find the correlations
between the introduced independent variables. We first com-
pute the principal component loadings of each variable up
to the principal component that provides a large cumulative
contribution rate (e.g., over 90%). On the basis of the principal
component loadings, we classify the introduced variables into
a certain number of classes.

We then pick up one variable from each class and calculate a
multiple regression line for every combination of the variables
picked up. From among the multiple regression lines thus
calculated, we finally select one that achieves the largest value
of the contribution rate adjusted for degrees of freedom, which
indicates goodness of fit of estimates to the corresponding
measured values.

4In the case of MOS, we simply take an average of the measured integers
for a stimulus over all assessors. However, it should be noted that this method
of the calculation makes an implicit assumption that the difference in integer
between any two successive categories means the same magnitude of the
assessor’s sensation (e.g., “5 − 4” has the same meaning as “3 − 2”). The
assumption is not necessarily valid as shown in [17], [19] and [22]. Thus,
in the strict sense, MOS is an ordinal scale, which only has a greater–than–
less–than relation between scores given by assessors. The law of categorical
judgment does not make the above assumption.



IV. EXPERIMENTAL METHODOLOGY
This section explains an experimental methodology to ex-

amine the effectiveness of the proposed estimation method. We
first present an experimental network along with contents to be
assessed. We then introduce application–level QoS parameters
and explain how these parameters are employed in deriving
multiple regression lines. Furthermore, we describe conditions
under which user–level QoS was measured.

A. Experimental network and contents
1) Network configuration: Figure 1 shows the configuration

of the experimental network; it consists of two routers (say
Routers 1 and 2) and four PC’s, which are used as a media
sender (MS), a media recipient (MR), a Web server (WS), and
a Web client (WC). Routers 1 and 2 are RiverStone’s RS3000.
The link between the routers and ones between a router and a
PC are all Ethernet channels. The link speed between a PC and
a router is 100 Mb/s, while the one between the two routers
is 10 Mb/s, which is therefore a bottleneck.

Cisco 2600Cisco 2600

Web server Web client

MS MR

WCWS

10Mbps
100Mbps

Fig. 1. Configuration of the experimental network
The MS transmits a pair of audio and video streams to the

MR with UDP. Table I gives specifications of audio and video
used in the experiment. We have set three kinds of picture
patterns to examine its effect on the accuracy of the estimation.
Since we have kept the average bit rates of audio and video
constant regardless of the picture pattern, the spatial (i.e.,
picture) quality varies slightly from picture pattern to picture
pattern. However, the difference in the quality is scarcely
noticeable.

TABLE I
SPECIFICATIONS OF AUDIO AND VIDEO

audio video

coding scheme
Linear PCM 16bit

MPEG148kHz 2ch
image size［pixel］ – 320 × 240

picture pattern – I
– IPPPPPPPPPPPPPP
– IBBPBBPBBPBB-

-PBBPBB
average MU size [byte] 9600 10400

MU rate [MU/s] 20 30
average bit rate［Mb/s］ 1.536 2.5

recording time [s] 15 15

As in [2], the network transfers Web traffic as interference
to the audio–video streams according to the configuration of
WebStone 2.5, which is a Web server evaluation tool [24].
WebStone generates Web client processes on the WC PC;
those client processes retrieve specified files from the WS PC
continuously. Table II shows the set of files to be retrieved in
our experiment.

The Web traffic competes with the audio-video stream for
the link capacity; this causes packet loss of audio and video.
When a video packet is lost, we resort to the same method
for error concealment as that of [18]: the macroblock con-
taining the lost video packet is replaced by the corresponding
macroblock from the previous frame.

TABLE II
THE SET OF FILES TO BE RETRIEVED FROM THE WEB SERVER

file name size [kbyte] probability
file500.html 0.5 0.350
file5k.html 5.0 0.500
file50k.html 50.0 0.140
file500k.html 500.0 0.009
file5m.html 5000.0 0.001

2) Contents: Referring to the VQEG test plan [7] as in
[2], we have selected four types of contents: sport, music
video, movie and animation. As a video–dominant content
type, where video plays a more important role than audio,
we have adopted sport, while we consider music video audio–
dominant. As for movie, we regard both audio and video as
important; animation belongs to the same type, but its video
property is different from that of movie.

For each content type, we have prepared two contents; thus,
we have eight contents totally. Outlines of them are as follows:

• sport 1 and sport 2: Scenes of ice skating by a male
skater with background music, and a clip of a soccer
game, respectively. The audio includes a commentator’s
voice and spectators’ cheers.

• music video 1 and music video 2: Scenes of a male and
a female singing and dancing, and scenes of male duo
singing and dancing, respectively.

• movie 1 and movie 2: In the former, a couple are talking
at an airport check–in counter. In the latter, a couple on
a date are talking at a restaurant.

• animation 1 and animation 2: Scenes of a conversation
between two male characters, and scenes of a young girl
speaking to an old male character, respectively.

B. Measurement of application–level QoS
In each experiment, we changed the amount of the Web

traffic by increasing the number of the Web client processes
from 10 through 28 with an increment of two; this leads to
ten levels of the average Web traffic. During each experiment,
the media recipient (MR) measured values of application–level
QoS parameters which are listed in Table III.

TABLE III
APPLICATION–LEVEL QOS PARAMETERS

application–level QoS parameters notation notation
for audio for video

average MU rate [MU/s] Ra Rv

coefficient of variation of MU output interval Ca Cv

average MU delay [ms] Da Dv

MSE of intra–stream synchronization [ms2] Ea Ev

MSE of inter–stream synchronization [ms2] Eint

NR metric of video – SNR

MSE of video luminance – SF R

The nine parameters given in the first five rows are the
same as those in [17], which mainly represent the temporal
quality5; we call these nine ones the temporal parameters. The
last two parameters, SNR and SFR, are video spatial quality
metrics, which correspond to the NR model and FR model,
respectively.

In this paper, we consider three methods for the estimation:
(1) a method using only the temporal parameters, (2) one with
both temporal parameters and SNR, and (3) one with both
temporal parameters and SFR, which are referred to as the T
method, TN method, and TF method, respectively. Note that
the TF method is a kind of FR model and therefore has been
adopted just for comparison purposes.

5The coefficient of variation of MU output interval is defined as the ratio
of the standard deviation of the MU output interval to its average; therefore,
it represents the smoothness of the output stream. Also, Eint is an indicator
of differential delay between audio and video, i.e., skew of lip–sync.



C. Measurement of user–level QoS
We define an experimental run as the transmission of a

content with a picture pattern at a constant level of the average
Web traffic (i.e., when the number of Web client processes is
kept constant). During each experimental run, we recorded the
audio–video streams that the media recipient (MR) output; the
recorded streams are regarded as stimuli for user–level QoS
measurement. Thus, we totally have 240 stimuli because of
eight contents, three picture patterns for each content, and ten
levels of the average Web traffic.

In the rating–scale method, we utilized the following five
categories of impairment: “imperceptible” assigned integer
5, “perceptible, but not annoying” 4, “slightly annoying” 3,
“annoying” 2, and “very annoying” 1, which are referred to
as Category 5 through Category 1, respectively.

We put the 240 stimuli in a random order and presented
them to 25 assessors, using a PC with headphones and a 17–
inch LCD display. The distance between the display and each
assessor was set to that in the case where he/she usually uses
a PC (i.e., approximately 50 cm through 1 m).

The assessors are Japanese males at twenties. They were
non–experts in the sense that they were not directly concerned
with audio and video quality as a part of their normal work. It
took about 90 minutes for an assessor to assess all the stimuli.

V. EXPERIMENTAL RESULTS
This section first presents the measurement result of the

psychological scale and then derives its estimate by QoS map-
ping. We further compare the accuracy of the three estimation
methods introduced in Subsection IV-B.

A. Measurement result of user–level QoS
We utilized the method of successive categories to calculate

the interval scale from the results obtained in Subsection IV-C.
For the comparison of the interval scales for the eight contents
on the same basis, we applied the law of categorical judgment
to all the classification results of the eight contents together,
i.e., the 240 stimuli.

In order to test the goodness of fit of the interval scale,
we carried out the Mosteller’s test. As a result, we have
found that the test with a significance level of 0.05 can reject
the hypothesis that the observed value equals the calculated
one. We then checked stimuli which give a large error of
Mosteller’s test to find nine ones. Removing the nine stimuli,
we saw that the hypothesis cannot be rejected. Consequently,
for the 231 (= 240 − 9) stimuli, we can consider the interval
scale as the psychological scale.

Since we can select an arbitrary origin in an interval scale,
we set the minimum value of the psychological scales for the
231 stimuli to unity (i.e., 1). Under this condition, we also
calculated the lower boundaries of the categories and got 6.347
for Category 5, 5.213 for Category 4, 4.082 for Category 3,
and 2.751 for Category 2.

B. Estimation of user–level QoS
For the three estimation methods introduced in Subsec-

tion IV-B, we have derived a multiple regression line for each
content according to the procedure described in Subsection III-
B. In the derivation for each content, we used measurement
results of the application–level QoS parameters and the user–
level QoS parameter for the three picture patterns all together.

First, principal component analysis provided the principal
component loadings of each variable, which classified the
application–level QoS parameters (i.e., the independent vari-
ables) into eight classes as shown in Table IV

In each method, we then performed multiple regression
analysis of all combinations of the application–level QoS
parameters under the condition that one parameter is selected
from one class. As a result, we found that there is no single
combination which achieves very large values of the contribu-
tion rate adjusted for degrees of freedom for all the contents.
However, it is desirable to adopt a single combination for all
the contents in order to facilitate comparison of their multiple
regression lines. Thus, we have taken this approach so that the

TABLE IV
CLASSIFICATION OF APPLICATION–LEVEL QOS PARAMETERS

(1) T method (2) TN method (3) TF method
class parameters parameters parameters

A Ra,Rv Ra,Rv Ra,Rv

B Da,Dv 　 Da,Dv 　 Da,Dv

C Ca Ca Ca

D Cv Cv Cv

E Ea Ea Ea

F Ev Ev Ev

G Eint Eint Eint

H -　 SNR SF R

adopted combination can make values of the contribution rate
adjusted for degrees of freedom as large as possible.

The application–level QoS parameters of the adopted com-
bination have been statistically tested whether they make
significant contributions to the multiple regression line. We
then removed the parameters which do not make any signif-
icant contributions and again performed multiple regression
analysis.

Below, we show the multiple regression lines thus obtained.
Let us represent the estimate of the psychological scale by
ÛT , ÛTN , or ÛTF ; the superscripts T , TN and TF imply
the T, TN, and TF methods, respectively. Also, let R∗2 denote
the contribution rate adjusted for degrees of freedom. Then,
the regression lines for sport 1, movie 1, music video 1 and
animation 1, for instance, are given as follows:
・sport 1

ÛT = 18.615− 0.048Dv − 17.862Ca (1)
−0.026Ev (R∗2 = 0.891)

ÛTN = 18.205− 0.048Dv − 13.334Ca (2)
−0.015Ev − 8.724SNR (R∗2 = 0.950)

ÛTF = 15.898− 0.042Dv − 13.275Ca (3)
−0.016Ev − 0.003SFR (R∗2 = 0.940)

・movie 1

ÛT = 15.646− 0.031Dv − 13.645Ca (4)
−0.028Ev (R∗2 = 0.875)

ÛTN = 18.204− 0.031Dv − 8.729Ca (5)
−0.015Ev − 13.005SNR (R∗2 = 0.913)

ÛTF = 13.538− 0.029Dv − 9.813Ca (6)
−0.016Ev − 0.009SFR (R∗2 = 0.914)

・music video 1

ÛT = 16.995− 0.044Dv − 18.588Ca (7)
−0.014Ev (R∗2 = 0.876)

ÛTN = 18.935− 0.035Dv − 19.000Ca (8)
−0.014Ev − 4.485SNR (R∗2 = 0.897)

ÛTF = 15.214− 0.040Dv − 15.289Ca (9)
−0.009Ev − 0.001SFR (R∗2 = 0.898)

・animation 1

ÛT = 15.146− 0.024Dv − 12.767Ca (10)
−0.037Ev (R∗2 = 0.849)

ÛTN = 20.924− 0.023Dv − 10.790Ca (11)
−0.050Ev − 44.514SNR (R∗2 = 0.865)



ÛTF = 13.172− 0.018Dv − 11.161Ca (12)
−0.023Ev − 0.013SFR (R∗2 = 0.904)

C. Comparison of the estimation methods
We now examine how accurately the three estimation meth-

ods predict the user–level QoS, namely, the psychological
scale. Figures 2 through 4 plot the three kinds of estimated
values along with the measured ones as a function of the
number of Web client processes in the case of sport 1.
Figures 5 through 7 present the case of music video 1. In
these figures, the lower boundaries of the categories are also
plotted as straight dotted lines parallel to the abscissa.

Fig. 2. Psychological scale versus number of Web client processes (sport 1,
Picture pattern: I).

Furthermore, Table V displays correlation coefficients be-
tween estimates and measured values in the three estimation
methods for the four contents.

TABLE V
CORRELATION COEFFICIENT BETWEEN ESTIMATES AND MEASURED

VALUES FOR THE THREE ESTIMATION METHODS

T method TN method TF method
sport 1 0.951 0.979 0.974
movie 1 0.942 0.962 0.962

music video 1 0.943 0.955 0.955
animation 1 0.930 0.940 0.958

Figures 2 through 7 and Table V indicate that the TN and
TF methods, which utilize both temporal quality parameters
and spatial one, provide more accurate estimates than the T
method for all the four contents; also, the accuracy of the TN
method is comparable to that of the TF method.

So far we have estimated user–level QoS for a content by
the multiple regression lines obtained for itself; for example,
Eq. (1), (2) and (3) were employed for sport 1.

Next, utilizing the multiple regression lines obtained in the
previous subsection, we estimate the user–level QoS for the
other content of the same type; namely, sport 2, movie 2, music
video 2, and animation 2. For instance, Eq. (1), (2) and (3)
are applied to sport 2.

TABLE VI
CORRELATION COEFFICIENT BETWEEN ESTIMATES BY THE MULTIPLE

REGRESSION LINES FOR THE OTHER CONTENT AND MEASURED VALUES

T method TN method TF method
sport 2 0.938 0.917 0.948
movie 2 0.895 0.904 0.919

music video 2 0.972 0.978 0.973
animation 2 0.846 0.893 0.888

Fig. 3. Psychological scale versus number of Web client processes (sport 1,
Picture pattern: IPPPPPPPPPPPPPP).

Fig. 4. Psychological scale versus number of Web client processes (sport 1,
Picture pattern: IBBPBBPBBPBBPBBPBB).

Table VI shows correlation coefficients between the esti-
mates and measured values. In this table, we observe that the
TF method achieves higher values of the correlation coefficient
than the T method for all the contents; on the other hand, the
TN method does not provide more accurate estimates than the
T method for all the contents. This is because the NR metric
adopted in this paper is not effective for all content types.
Even in the current case, however, note that the accuracy of
the TN method is comparable to that of the TF method.

From the above observations, we have learned that appropri-
ate metrics of video spatial quality can improve the accuracy
of the estimation. However, the metrics should be based on
some NR model from a practical point of view. The finding
of such metrics is an important subject in the next step of this
research.

Finally, we should mention that the T method can provide
estimates comparable to those by the TN and TF methods
in many cases. This suggests that the utilization of only
temporal quality parameters can be a practical approach to
the estimation in some situations. This is for further study.

VI. CONCLUSIONS
This paper proposed a real–time estimation method for

user–level QoS of audio–video IP transmission by utilizing
both temporal and No Reference spatial quality, namely, the
TN method. In terms of the estimation accuracy, we compared
it with a method using only the temporal parameters (the T
method) for four content types; in addition, just for compar-
ison purposes, we also treated a method with both temporal
parameters and Full Reference spatial quality parameter (the
TF method), though it cannot be used for real–time estimation.

As a result of experiment, we found that when their own
multiple regression lines are used for the estimation, the TN



Fig. 5. Psychological scale versus number of Web client processes (music
video 1, Picture pattern: I).

Fig. 6. Psychological scale versus number of Web client processes (music
video 1, Picture pattern: IPPPPPPPPPPPPPP).

and TF methods provide more accurate estimates than the T
method for all the four contents; also, the accuracy of the
TN method is comparable to that of the TF method. When
we apply the multiple regression lines obtained for the other
content of the same type, the TF method achieves higher
accuracy than the T method. In this case, however, the TN
method does not necessarily provide more accurate estimates
than the T method. We also noticed that the T method can
provide estimates comparable to those by the TN and TF
methods in many cases. From a practical point of view, the T
method can be an effective tool for the real–time estimation
in some situations; this should be for further study.

Future work include the finding of No Reference metrics
of video spatial quality and evaluation of the three estimation
methods for a variety of content types.
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